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Background

Bayesian Networks

Probabilistic graphical models based on a directed acyclic graph (DAG) G,

where each node represents a random variable in X = {X1, ..., XN }.

Markov property

The local distribution of each node Xi depends only on the values of its

parents ΠG
Xi

in G.

P (X|G) =
N∏
i

P (Xi|ΠG
Xi

)

Parameters

We refer to all parameters specifying probability distributions P (Xi|ΠG
Xi

)
as ΘG.
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Background

Bayesian Networks
A simple example of a Bayesian network with 3 variables.

A

G

B C

And the joint distribution it induces.

P (A, B, C|G) = P (C)P (B|C)P (A|B)
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Structure Learning

Bayesian Network Structure Learning

To learn the structure of a Bayesian network from data D.
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Structure Learning

Score-Based Bayesian Network Structure Learning

To learn the structure of a Bayesian network from data D by searching for

the graph G that maximises a given fitness score.
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Structure Learning

BDeu Score-Based Bayesian Network Structure Learning
To learn the structure of a Bayesian network from data by searching for the

graph G that maximises the posterior P (G|D).

P (G|D) ∝ P (G)
∫

P (D|G, ΘG)P (ΘG|G)dΘG
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Structure Learning

BDeu Score-Based Bayesian Network Structure Learning
To learn the structure of a Bayesian network from data by searching for the

graph G that maximises the posterior P (G|D).

P (G|D) ∝ P (G)
∫

P (D|G, ΘG) P (ΘG|G) dΘG

We focus on the influence of this prior on the learned structure.
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BDeu

Bayesian Dirichlet equivalent uniform
With some assumptions (including complete discrete data and Dirichlet

priors), we can write P (G|D) in closed form and derive the BDeu score.1

BDeu(G, α) =
n∏

i=1

qi∏
j=1

Γ(αij)
Γ(αij + Nij)

ri∏
k=1

Γ(αijk + Nijk)
Γ(αijk)

,

1D. Heckerman, D. Geiger, and D. M. Chickering. “Learning Bayesian Networks : The

Combination of Knowledge and Statistical Data”. In: Machine Learning 20 (1995),

pp. 197–243.
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BDeu

BDeu(G, α) =
n∏

i=1

qi∏
j=1

Γ(αij)
Γ(αij + Nij)

ri∏
k=1

Γ(αijk + Nijk)
Γ(αijk)

,

where for a variable i

ri is its arity

qi is the number of joint instantiations of its parents

Nijk is the number of observations of full instantiation ijk

Nij =
∑

k Nijk

αijk = α/(riqi) and αij = α/qi
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BDeu

BDeu(G, α) =
n∏

i=1

qi∏
j=1

Γ(αij)
Γ(αij + Nij)

ri∏
k=1

Γ(αijk + Nijk)
Γ(αijk)

,

where for a variable i

ri is its arity

qi is the number of joint instantiations of its parents

Nijk is the number of observations of full instantiation ijk

Nij =
∑

k Nijk

αijk = α/(riqi) and αij = α/qi

α is the Equivalent Sample Size (ESS)
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Prior Dependence

Impact of the ESS in the final structure

It is well known that ESS has a large influence on the final structure.1

1T. Silander, P. Kontkaken, and P. Myllymaki. “On sensitivity of the map Bayesian network

structure to the equivalent sample size parameter”. In: Proceedings of the 23rd Conference

on Uncertainty in Artificial Intelligence (UAI-07). 2007, pp. 360–367.
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Prior Dependence

Impact of the ESS in the final structure

It is well known that ESS has a large influence on the final structure.1

Bayesian score

For large enough data, one should learn the same network regardless of

the prior knowledge expressed via the ESS.

We investigate whether that holds for BDeu-based structure learning.

1Silander, Kontkaken, and Myllymaki, “On sensitivity of the map Bayesian network structure

to the equivalent sample size parameter”.
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Prior Dependence

Impact of the ESS in the final structure
We analyse the influence of the ESS from two different angles:

Graph Complexity

How variations in the ESS affect the number of arcs in the structure.

Robustness

What conditions are required for prior-independence.
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Graph Complexity

Variation of the number

of arcs with ESS and

sample size

• The number of arcs

increase with the ESS.

• Prohibitive large

amount of data to

achieve prior

independence.
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Robustness

Definition (Robust Interval)
The largest range of ESS values for which all obtained optimal structures (for

each ESS) are Markov equivalent.

RI := arg max
[α1,α2]

{|α2 − α1| : G∗(α′) ≡ G∗(α′′), ∀α′, α′′ ∈ [α1, α2]},

where G∗(α) = arg maxG BDeu(G, α) is the optimal graph for a given ESS,

and ≡ denotes Markov equivalence.
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Robust Interval

Variation of the RI with

ESS and sample size

• The RI increases with

the sample size.

• Prohibitive large

amount of data to

cover small ESS range.
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UCI Datasets

RI for datasets with no

known distribution

• Insufficient data to

cover small ESS range.

• Similar observations

for graphs learned

with and without

ordering constraints.
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Available data is likely insufficient to avoid prior

dependence in BDeu-based Structure Learning.


